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Abstract

We present a new parallel approach to preconditioning for very large, sparse.

unsymmetric, linear systems. We explicitly compute an approximate inverse to our

original matrix. This new preconditioning matrix can be applied most efficiently

for iterative methods on massively parallel machines, since the preconditioning phase

involves only a matrix-vector multiplication, with possibly a dense matrix. Furthermore

the actual computation of the preconditioning matrix has natural parallelism. For a

problem of size n, the preconditioning matrix can be computed by solving 7z independent

small least squares problems. The algorithm and its implementation on the Connection
Machine CM-2 are discussed in detail and supported by extensive timings obtained from
real problem data.

1 Introduction

Up to today, preconditioning methods on massively parallel systems have faced a major

difficulty. The most successful preconditioning methods in terms of accelerating the
convergence of the iterative solver such as incomplete LU factorizations are notoriously

difficult to implement on parallel machines for two reasons: (1) the actual computation

of the preconditioner is not very floating-point intensive, but requires a large amount of

unstructured communication, and (2) the application of the preconditioning matrix in the
iteration phase (i.e. triangular solves) are difficult to parallelize because of the recursive
nature of the comt)utation.

We shall consider the numerical solution of very large but sparse linear systems of the
forln

Az = b, x, b E R '_

without assuming any special properties for A such as symmetry or definiteness. The order

of A typically lies between, say, one thousand and one 1;fillion. However, A usually has just
a few nonzero elements per column. Our aim is to construct an apl)roximate inverse M to

A and consider applying the iterative solver to the preconditioned system

AMy=b. M_A -1, x= My.
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2 Overview of the algorithm

The CM-2 is a massively parallel SIMD machine, and can, as our preliminary timings
show, compute My extremely rapidly when M is a banded matrix. Thus it seems natural

to require that M be a matrix with , say, 2p q- 1 diagonals, p > 0, so that we may keep tm
very small relatively to the time spent for computing Av.

The closeness might be measured in some norm II II, so that we need to find an M which
minimizes

IIAM - Ill.

In general, this problem is even harder than solving Az = b; the main idea of our approach
is to choose the norm to be the Frobenius norm.

Let us denote by Ak the columns of A. It is relatively simple to realize that to minimize

IIAM - IIIF,

we need to minimize

IIAMk - ekll2

for each k individually, 1 < k < n. Since each Mk contains at most only 2p + 1 nonzero

elements, we need to solve n independent least square problems of size only n× (2p+ 1). This
can be done by constructing, factorizing and solving all the normal equations simultaneously

with parallelism of order n, where n is the dimension of the original system. To construct

the normal equations, we must compute the sparse inner products of each column Ak with
itself and its 2p nearest neighbors. For more details see [2].

Faced with a plethora of iterative methods for solving nonsymmetric linear systems, we

opted for Van der Vorst's algorithm Bi-CGSTAB [6]. The method is transpose free and
easy to implement. We apply Bi-CGSTAB to the preconditioned system

AMy = b

and simply multiply each vector by M before it is multiplied by A. The solution zn is then
merely given by z,_ = My,_. These additional multiplications by M are extremely fast on

the CM-2 because of the banded structure of M. We choose z0 = Y0 = 0 as an initial guess.

Our stopping criterion for a given tolerance e > 0 is r_ I < E, where r0 = b- A't[yo = b and
r,, = b- AMy,_.

3 Results

3.1 Convergence

The test matrices we used are the SHEP_MANx and POFtESx matrices from the Boeing-
Harwell sparse matrix collection. To evaluate the effectiveness of the preconditioner in

terms of convergence, we compare our results to the results reported by Tong in [5]. We
use the same stopping criterion with e = l0 -s and iterate up to a maximum of 2000

iterations. Tong uses incomplete ILU(k) and ILUT(k) preconditioning where k is small and

chosen in an optimal way. This is a standard preconditioner but inherently very difficult

to parallelize and very expensive for general sparse matrices. We see that although we are

able to reduce the number of iterations by a factor up to 10, we usually do not perform as
well as the ILU preconditioner in terms of number of iterations.
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Unpreconditioned[5]
Preconditioned[5]
Unpreconditioned
Precond.1diag.
Precond.3diag.
Precond.5diag.
Precond.11diag.
Precond.21diag.
Precond.35diag.
Precond.51diag.

P1 P3 S1 $3 $4 $5
200 1698 384 *
15 17 18 66 25 15

2481 * 403 * 92 *
B I 4411224 406 69 883

3781 521 81 339 56 711 1

243 I 926 68 342 56 2401
170 I * 65 375i 55 235 J

36 I * 46 3401 55 2"2"2[

- ' * 45 3401 47i 2121

2 : B 42 335 I 461 2151

* : more than 2000 iterations

B : Breakdown in Bi-CGSTAB

TABLE 1

Study of convergence for poresz and shermanx
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-"'-_n p reconditioned

_ Exec.
__ time[s]
S1 127

$3 *

$4 62

$5 *

P 1 286

P3 *

2.5 5

* 5

1.6 3
* 9

5.1 23

* 7

Preconditioned

Nb. of _ Minim.

diag. in _.__..___I_ exec. tiale[si

21 [ 0.62
206 12.4

36 ] 1.1
120 9.3

9 0.92

36___11_ 8.77
* : more than 500 iterations

B : Breakdown in Bi-CGSTAB

TABLE 2

Study of ooerall performance

3.2 Number of diagonals vs. total execution time

Here the tolerance e = 0.001 and the maximum number of iterations is 500. All the runs
were done on a 8K processor CM-2, in double precision and under slicewise.

In table 2 we computed the number of diagonals in M which minimizes the total

execution time by increasing the number of diagonals up to 51.

4 Performance analysis on a large problem

We used a large problem with about 16,000 unknowns to study the performance of the

implementation on the CM-2. The matrix is a model of the HSCT (High Speed Civil
Transport plane) obtained from Olaf Storaasli at NASA Langley Research Center. We are

intersted in tile performance of the construction of M, the multiplication by M and A. and
in the overall performance of the algorithm.

The multiplication with A is (lone with the sparse-matvec-mult routine provided by
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1_b. of diagonals in M

Compute M time[%]

Compute M [Mflops/sec.]

A x v time[%]

A x v [Mflops/sec.]

M x v time[%]

M x v [Mflops/sec.]

Overall effective Mflops/sec.

II 11 31 5 71 91 11

0.3 0.6 0.9 1.2 1.5 1.8 I

10.8 15.7 17.9 19.7 21.4 23.4

98.8 98.3 97.7 97.2 96.6 96.1

16 16 16 16 16 16

0.07 0.3 0.6 0.8 1.0 1.3

341 239 225 221 218 214

17.4 17.8 18.3 18.7, 19.2 19.6
TABLZ 3

Performance analysis for olaf

the CMSSL scientific software library -- we note here that the trace (a variable which

stores the sparsity structure of A) is computed only once and then saved for additional

multiplications. The multiplication with M is easy since M is banded and requires local

(CSHIFT) communications only. All the dimensions were always extended up to a multiple

of 4096 in order to enhance the performance -- the CSHIFT command is very sensitive in

that respect. Yet, the overall effective Mflops rates were computed using tt_e number of

necessary operations only. All these executions ran for 500 iterations.

In table 3 which was obtained on a 32K CM-2, the time percentages are always given

with respect to the total execution time. We observe that the multiplications by M are

negligible and very efficient. The computation of M necessitates indirect addressing which

is rather costly, but since M is computed only once, the time spent to compute it remains

neglegible. The overall relatively low performance hinges upon the 16 Mflop rate at which

the sparse matrix vector multiply routine of the CMSSL library operates.

5 Conclusions

Preconditioning the linear system by an approximate banded inverse M not only enhances

convergence, but also reduces on the CM-2 the total execution time which includes the time

necessary to compute M. It is a somewhat blunt tool in the sense that blindly increasing

the number of diagonals in M does not significantly ameliorate the convergence beyond a

certain point, typically somewhere between five and eleven diagonals. The computation of

M does not necessitate any global communications on a SIMD machine such as the CM-2,

and applying M to a vector v is extremely fast on a massively parallel machine.
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